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OBJECTIVE  ESTIMATES  BASED ON EXPERIMENTAL  DATA  AND 

INITIAL  AND  FINAL KNOWLEDGE 

by Burt M. Rosenbaum 

Lewis  Research  Center 

SUMMARY 

A reformulation of the  expression  for  T'entropy''  in  the  presence of experimental 
data  enables  the  determination of Ttleast-biasedT'  probability  estimates  in  the a posteriori 
case  for both discrete  and  continuous  sample  spaces.  The  method is an  extension of that 
used by Jaynes  in 1963 by means of which  he estimated  least-biased  probability  values 
for  the  a  priori  situation  for  a  discrete  sample  space  where  his  probability  estimates 
objectively took into  consideration any prior knowledge that  an  experimenter might  have 
a t  his disposal.  The  modification  employed  herein  allows  for  the  adjustment of the  in- 
fluence of prior knowledge on the  posterior  distribution  in  accordance with the  subjective 
degree of belief in  the  accuracy of the  prior knowledge.  Also, a s   pa r t  of the  modified 
method, any posterior knowledge is treated  in  the  same way a s  the  prior knowledge. 
Thus,  the  "best"  posterior  estimates depend on initial or prior  information,  exper- 
mental  data,  and  final o r  posterior  information.  The  postulated  method  agrees with the 
rule of Bayes  and  affords  an  insight  into  the  rules of Laplace,  namely,  the  principle of 
insufficient  reason  and  the  rule of succession.  Several  simple  examples  are  treated  in 
detail to illustrate  the  procedure  followed. 

INTRODUCTION 

Scientific  inference  techniques  based on Bayesian  methods are  internally  consistent 
(refs.  1 and 2). A s  soon a s  a prior  distribution  has  been set up by'the  statistician,  the 
rule of Bayes  states how the  experimental  data  modifies  the  prior  distribution  to  yield  a 
unique posterior  distribution. 

The  difficulty  associated  with  the  application of Bayesian  concepts  to a particular 
problem  can  be  attributed  to  the  arbitrariness of the  assumed  prior  distribution  (refs. 3 
and 4). Two statisticians with the  same  initial knowledge will,  in  general, not assume 



the  Same  priors  and,  hence,  their  posteriors or final  distributions  will  also  differ. It 
has  been  argued  that  the  two  posteriors  obtained would not  be  significantly  different  and, 
in any  event, if  a prior is smooth,  the  experimental  evidence will eventually  overwhelm 
any bias  that  might exist in  the  prior;  therefore, any prior  that is consistent  with  the 
initial  information is satisfactory (ref. 5). However,  while  this may be  the  case when 
"sufficient"  data is on  hand,  the  question as to  whether a particular  prior is or is not 
biased still remained  unanswered. 

The  establishment of unbiased  priors  was  the  problem  Jaynes  considered (ref. 6). 
Jaynes  used  the  maximum  entropy  principle  employed  in  information  theory (ref. 7) and 
statistical  mechanics (refs. 8 and 9) to  obtain estimates of prior  probabilities. Using 
these  estimates,  Jaynes  calculated  expectation  values of a loss  function  associated with 
each  allowable  decision.  The  solutions  that  he  obtained showed that  the  optimum  deci- 
sions - those  yielding  the  smallest  expected  loss  values - were  the  same as one would 
normally  choose  based  on  a  common  sense  approach. When the  initial  knowledge or  
constraints  governing  a  particular  decision  problem  changed so  that it was  obvious  that 
the  optimum  decision  should  change, it was found that  the  maximum  entropy  concept  also 
dictated a like  change  in  the  optimum  decision. When the  problem  under  consideration 
became so  complicated  that  common  sense or  intuition  could not definitely single Jut  the 
optimum  decision,  the  mathematical  approach  based on maximum  entropy  still  was  able 
to  indicate unambiguously  a particular  decision as optimum.  The  major  point  to  be 
noted is that  Jaynes  had  constructed a quantitative  method  for  establishing  values of 
prior  probabilities  that  could  be  said  to  be  objective  and  "optimally"  reasonable. 

Although Jaynes had  devised a method for  calculating  objective  optimum  values  for 
prior  probabilities  from  initial  knowledge,  these  values  could not  be used  to  calculate 
unique values of posterior  probabilities.  In  order  to  use  the  Bayes  rule  in going from 
initial  to  final  probabilities, what is needed is the  prior  probability  density  function  for 
the  probabilities  themselves,  and  Jaynes'  method  does not generate  this  function. 

This  report  extends  the method of Jaynes so  that  probability  estimates  based on both 
initial  information  and  experimental  data may be  made.  The  extension  affords  a new in- 
terpretation of Laplace's  principle of insufficient  reason  and  introduces  a  weight  param- 
eter  into  the  calculation  dependent on the  statistician's  degree of belief  in  his  original 
"guesstimates". 

SYMBOLS 

a. number of t imes outcome i would be  expected  to  occur  based on initial  infor- 
1 

mation 

a al ,  a2, . . . , a n  

2 



v 

M 

MO 

Mr 
m. 

m 
1 

4 

n 

n. 
1 

p (d5) 
P 

P 

Q 
S 

SD 
t 

adjustable  parameter 

expectation  value of pi based  on  the  posterior  probability  density  function 

expectation of X 

probability  density  function  for pi 

multivariate  probability  density  function  for  variables [pl, pz, . . . , pn} 

probability  density  function  for t 

probability  density  function  for u 

probability  density  function  for x 

function of index i 

expectation of gk 

modification of entropy  function  defined in  eq. (36) 

function of index i 

expectation of h 

number of prior  constraining  equations 

number of actual  experimental  measurements 

number of initial  hypothetical  measurements 

number of measurements of runout  time 

number of times  outcome i occurs 

vector  {ml,  m2, . . . , mn} 

number of possible  outcomes 

multiplicity  associated with outcome i 

probability of data  given  that 5 takes on values ,pn] 
probability 

vector {PI, P2,. * , Pn} 

number of posterior  constraining  equations 

entropy  defined  in  eq. (4) 

"entropy"  function  defined  in  eq. (35) 

time-to-failure, hr 

times-to-failure, ta < $, 
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W number of randomly  selected  white balls 

X bounded continuous  random  variable 

X value of X 

B(q,r) Beta  function of q  and r 

r (q )  Gamma  function of q 

Dirac  delta  function  with  argument x 

kth Lagrangian  multiplier,  k # 0 

mean of t 

mean of X 

qth Lagrangian  multiplier, q + o 

'k 

Pt  

VX 
V 
q 

(T alternating  fatigue  stress 

O t  

OX 

2 

2 

variance of t 

variance of X 

Subscripts: 

A altered  (after  incorporation of some of the  data) 

D final or posterior (after acquisition of data) 

i outcome i 

k kth prior  constraint 

q qth posterior  constraint 

ai 
0 initial or prior  (before  acquisition of data) 

ath outcome of ni possible  outcomes 
1 

Superscripts: 
A least-biased  estimate 

objective  (not  necessarily  least-biased)  estimate 

average  value 

N 

- 

METHOD OF JAYNES 

We consider  an  experimental  measurement which can  take  on any one of n  mutually 
exclusive  distinct  results  where  the  possible  results  are  labeled by the  numbers 
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1 , 2 , .  . . ,n .  
state that yiell 

Let pi, i = 1,2 ,  . . . , n,  denote  the  probability  that  the  system is in  the 
d s  the ith result where it is assumed  that  the  nature of the  experiment is 

such  that pi is independent of time. We have 

n 
C P i = l  
i=l 

Suppose,  before  any  experimental  measurements are made, we know or  can  make a 
guess of the  values of the  expectations of certain  functions of i and  that  this  prior 
knowledge o r  information  may  be  expressed by K independent  relations of the  form 

n 

i= 1 

where 

K s n - 1  (3) 

According  to  Jaynes,  the  least-biased  prior  probability  estimates , i = 1 , 2 , .  . . , n ,  
are  those  that  maximize  the  entropy 

n 
s = - pi In pi 

" 

i=l 

subject  to  the  constraints  given by equations (1) and (2). 
Notice  that if there is no initial information  about  the  experiment  other  than  the  pos- 

sible  results,  then  there  are  no  constraints  except  that of equation (1), which always 
applies,  and  the  entropy S is greatest  when all pi are the  same;  that is, 

Go), = ; 
Hence,  in  the  absence of any  information,  the  least-biased  prior  probability  estimates 
are the  same  for  every  possible  result.  These  estimates  agree with Laplace's  principle 
of insufficient  reason,  sometimes  attributed  to  Bernoulli, which assumes  that  each re- 
sult is as likely  to  be  true as any other  result  unless  there exists some  reason for as- 
suming  otherwise.  Jaynes  has noted that  the  maximum  entropy  criterion  leads  to  prior 

5 



probability  estimates  that are as uniform as possible  subject  to  the fact that  the  con- 
straints  must  hold. 

In  reference 6,  Jaynes  applies  his method to  the  situation  wherein a plant  manager 
must  decide which single  color  to  paint  the  day's  output of 200 "widgets". This  art icle 
by Jaynes  represents a stimulating  and  plausible  argument  for  the  method  in  general. 

ROWLINSON'S  CRITICISM OF JAYNES' MI3HOD 

Although Jaynes'  arguments  appeared convincing to  some (e. g .  , refs. 10  and 11) , 
it was still opposed by the  classical  statistician  for whom the  probability of an  outcome 
can only be  interpreted a s  the  frequency with which it occurs  in  a  given  experiment or a 
given  idealization of an  experiment.  From  this  viewpoint,  parameters  in a probability 
distribution  are  constants which  cannot  be said  to  possess  probability  distributions. On 
the  other  hand,  the  Bayesian  statistician treats any physical  parameter  about  which  he 
has less than f u l l  knowledge as a  random  variable  where  the  probability  that  the  param- 
eter under  consideration may take on a particular  value or lie in  a  given  interval  repre- 
sents a  person's  degree of belief  in  that  happenstance  based on what the  person knows or 
feels  at  the  time.  This  latter viewpoint is anathema  to  the  classical  statistician. 

Rowlinson (ref. 12) discussed a game of chance  in which the  score on each  turn 
could  be  any  integer  from 1 to 6. If it is known that  the  average  score is 4.5,  then,  em- 
ploying Jaynes'  analysis, we have 

6 
ipi = 4.5 

i=l 

and we can  maximize 

6 
S =  - C p i l n p i  

i=l 

subject  to  the  constraints  given by equations (1) and (6) to  yield  Jaynes'  least-biased es- 
timates (io) for  the  probability of each  integer on any turn.  Carrying out this  process 
gives i 

( q i  = 
(1. 45)i 

j = l  

6 



Rowlinson,  however, states that  there is really no reason  for  trusting  that  the  prob- 
abilities a s  generated by the  Jaynes'  method  are  actually  correct. For instance,  he 
says  that  each  turn of the  previously  mentioned  game of chance  might  consist of noting 
the  number W of white balls  in a sample of five  balls  randomly  selected (with replace- 
ment) from  an  urn containing  seven  white  and three  black  balls,  the  score i for  each 
turn being (W + 1). For this  game, 

The  pi's  for  equations (8) and (9) a r e  as follows: 

Method Score, i 

Pi 

0 .345 

.16807 

It is seen  that  the two probability  distributions are markedly  different. On this  basis, 
Rowlinson rejects  the  principle of maximizing  the  entropy a s  a "useful way of attacking 
the  problem" in the first place. 

The  rationale  behind  Rowlinson's  argument is that  taken by the  classical  statistician. 
Rowlinson  throws out the  maximum  entropy  estimates of pi because  there  are  situations 
that  exist when these  estimates  are not correct.  In  fact,  Rowlinson would object  to  any 
prior  estimate of pi because we can  always  manufacture  games  where  the  prior  esti- 
mate would be  far  from being correct.  Indeed, Rowlinson maintains  that on  the  basis of 
the  information  given,  namely,  that  the  score  can  be  any of the  integers  from 1 to  6 and 
that  the  average  score is 4 . 5 ,  there is no means of estimating  the  pits. 

least biased, any set of pi's  satisfying  the  constraints  might  actually be correct .  Be- 
cause  the  average  score  per  turn  in  the  example is 4 . 5  and  this  value is larger  than it 

The  position of Jaynes is that, although  the p i l s   a s  given by equation (8) are the 
- 
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would be if all pi were  equal, one would reasonably  expect  the  pi's  associated  with  the 
larger  values of i to  be larger than  those  associated  with  the  smaller  i-values.  This is 
what the  maximum  entropy  concept  objectively  accomplishes. Knowing only that  the  av- 
erage  score is 4.5  does not make  the  assumption  that  p5 is more  than  twice as large a s  
p6 (as is given by eq. (9)) reasonable.  The  maximum  entropy  criterion  can  be  said  to 
give equal pi 's   unless  there is a good reason for not  doing so and,  in  the  event  that 
there is such a reason,  the  criterion  still   endeavors  to  keep  the  pi 's as nearly  equal a s  
possible  while  satisfying  the  constraints  imposed by prior knowledge.  The  more  prior 
information  that is available,  the  more one would expect  the  least-biased  probability es- 
timates  to  be  closer  to  reality.  However,  in any  but  the  complete  information case,  the 
chance  that  these  probability  estimates  are  exactly  correct is for  all  practical  purposes 
zero  because  the  number of possible  distributions is infinite. 

To illustrate  that  least-biased  probability  estimates  become  better  approximations 
to  correct  values  as  prior knowledge increases,   let  it be  suspected  that  p5 is twice p6 
s o  that  the  additional  constraint  that 

P5 = 2P6 

is imposed.  The  least-biased  probability  estimates  become 

(io): = 
(1. 653)i 

4 
1= 

' I  

1.5(2)1/3(1.653)16/3 + (1.653)j 

j = l  

(io)5 = 
21/3(1. 653) 16/3 

4 
1. 5(2)1/3(1.653) l6l3 + (1.653)j 

j = l  

= 
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The  probability  distributions  given by equations (8), (9), and (11) are plotted  in  the  fol- 
lowing  sketch: 

. 4 -  - True game values (eq. (9))  A 

. 3 -  " 

1 2 3 4 5 6 
i 

And we see  that, for every  value of i except  for i = 3 ,  the pi given by equation (9) is 
closer  to  the pi of equation (11) than  to  that of equation (8). 

MODIFICATION OF THE FORM OF THE ENTROPY FUNCTION TO 

INCORPORATE  MULTIPLICITY  CONSIDERATIONS 

We consider  a  slightly  altered model from  the one heretofore  considered.  Suppose 
each  possible  experimental  measurement  labeled i, where i = 1 , 2 ,  . . . , n,   ar ises   f rom 
any of a  group of ni mutually  exclusive  distinct  outcomes.  L.et pia represent  the 

probability  that  an  experimental  result is the a:h outcome  in  the  set of ni outcomes 
associated with the ith possible  experimental  measurement. We have 

i 

2 
n. 

Pi ai = pi i = 1 , 2 , .  . . , n  

a.=l 
1 

where  equation (1) still applies s o  that 

i=l CY -1 i- 

9 



Again,  suppose  that  the  prior  knowledge is given by equations (2). Then, we can  proceed 
with Jaynes' method  where  the  entropy now is given by 

n 1  n. 

Piai  In p. ICYi 

i=l a -1 i- 

Maximizing S subject  to  the  constraints  given by equations (13) and (2) yields  the least- 
biased  probability  estimates 

where Xo-1 , X 1  ,X2, . . . , X k  are  Lagrangian  multipliers whose  values are  determined by 
substituting  equation (15) into  the  constraining  equations (13) and (2). 

From equation (12) and  the  fact  that (o)iai p is independent of ai 

n. 
1 

(io), =x 
a . = 1  

1 

Hence,  the  maximum  value of S subject to the  constraints  occurs when each of the  out- 
comes  to a given  value of i has  the  same  probability of happening.  Note 

a s  given  in  equation (16) is modified by the  factor ni where ni 

is the  multiplicity  associated with the ith experimental  measurement. 
When each of the ni outcomes, ai = 1,2, . . . , ni,  has  the  same  probability, we 

have 

10 



and  equation (14) takes on the  form 

i=l a.=l i= 1 
1 

Thus,  the  least-biased  estimates as  given by equation (16) 

"i 

result  from  maximizing 
equation (17) for S subject  to  the  appropriate  constraints.  Because  the  multiplicity 
associated with a given  experimental  measurement  can  never  be  neglected,  the  expres- 
sion for S that applies  to  every  problem should  always be that  given  in  equation  (17). 
However, in  the  absence of any  information  about  the  multiplicity of the  various  exper - 
imental results, ni is taken a s  unity for  each i and  the  expression  for S rever t s  to 
that  given  in  equation (4). 

A s  an  example of the  application of equation  (16), let us   turn once  again  to  the  game 
of chance  suggested by Rowlinson. For this  game, ni is the  number of ordered  ways 
of selecting (i - 1) white balls  and  (6 - i) black  balls so that 

The  equation of constraint is equation (6) where  g(i) = i. By equation (16) 

Employing  equation (1) to  eliminate e-" gives 

11 



Substituting  equation (20) into  constraining  equation (6) results  in 

i=l i=l 

o r ,  using  the  binomial  theorem, 

where 

-x 1 [ - e  

We get  from  equation (21) 

and  equation (20) becomes 

Hence,  the  least-biased  estimate  p  for pi is identical  to  the  correct  values  as 
given  in  equation (9) . C 

The  fact  that  the  least-biased  probability  estimates a r e  exactly  those  given by a 
binomial  distribution (when the  binomial  multiplicity or degeneracy of an  experimental 
measurement is included  in  the  entropy  formulation  and  the  constraining  condition  fixes 
the  true  average)  was pointed out by Jaynes  (ref.  13).  Indeed,  Jaynes went so  far a s  to 
state "if the  experiment  fails  to  confirm  the  maximum-entropy  prediction,  and  this  dis- 
agreement  persists on indefinite  repetition of the  experiment,  then we will conclude  that 
the  physical  mechanism of the  experiment  must  contain  additional  constraints which were 
not taken  into  account  in  the  maximum-entropy  calculation.  The  observed  deviations 
then  provide a clue a s  to  the  nature of the new constraints". 

12 
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CONSEQUENCE OFTHE RULE OF BAYES  WHEN NO PRIOR 

INFORMATION IS AVAILABLE 

We  now turn our attention  to a situation  that  has  been well  documented  in  the litera- 
ture.  The  problem  that  will be  reviewed  in  this  section will serve as a limiting  case  for 
the  generalized  method to  be proposed later in  this  report  and, as such, is important  in 
providing  necessary  insight. 

sible  results  and pi denotes  the  probability of getting  the ith result. We suppose  that 
no prior  information is available  and  that,  in a total of M repetitive  measurements,  the 
first  result  has  turned up ml  times,  the  second  result  m2  times,  and so forth. We 
have 

Again the  index i denotes  the ith possible  result of n  mutually  exclusive  pos- 

t m i = M  
i=l 

What we wish  to  calculate on the  basis of the  data  ml,  m2, . . . , mn} is a set of objec- 

tive  (not  necessarily  least-biased)  posterior  estimates p,, of the  probabilities pi. 

The  procedure we shall  follow is to first set  up the  prior  distribution  functior €or the 
probabilities,  then  to  employ  the  rule of Bayes  to  obtain  the  posterior  distribution  func- 
tion  for  the  probabilities,  and  finally  to  calculate  the  desired  objective  probability  esti- 
mates by finding  the  expectation  values of the  probabilities  based on the  posterior  distri- 
bution  function. 

( 
(- )i 

Because at the  outset  nothing is known about  the  occurrence of any of the  outcomes 
except  for  the  conditions  that pi 2 0 ,  i = 1 , 2 ,  . . . , n, and  equation (1) holds,  all  possible 
vectors  p = {pl,  p2, . . . , pn] a r e  equally  likely.  In  other  words,  every  point  in  the 

n-dimensional  hypercube 

- 

0 5 p 2 5 1  

0 5 p  5 1  n 

13 



is as likely  to  be t rue  as any  other  point  provided  both  points  satisfy  equation (1). The 
prior  probability  density  function  consistent  with  this  viewpoint is 

for all points  on  the  surface S where S is given by the  equation 

2 pi = 1 
i=l 

The  value of the  normalization  constant  c  must  be  such  that  integration of the  proba- 
bility  density  function  over  the  (n-1)-dimensional  surface S gives unity;  that is, 

O - C P 1 + P 2 + .  . . + p  5 1  

P , = I - ( p I + p , + .  . . + p  
"-1 

"-1' 

The  multiple  integral  in  equation (26)  may  be evaluated by using  the  Beta  function 
identity (ref. 14): 

Here  r(q + 1) denotes  the  Gamma  function  with  agrument (q + 1). Changing  the  variable 
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of integration  in  equation (27) from t to  x = at, we get 

la xq(a - x)'& = r ( q  + l)r(r + 1) aq+r+l 
r ( q  + r + 2) 

We now can  easily show that  the  integration of the  multiple  integral  in  equation (26) 
can be carried out as  a succession of integrals of the  type  appearing  in  equation  (28). 
Performing  the  integration  over pn-l (corresponds to q = 0, r = 0, a = 
1 - P1 - P2 - * ' * - Pn,2 ) leads  to  the following integral  taken  over pn-z: 

This  integral is of the  form  given  in  equation (28)  with q = 0, r = 1 ,  and 

a = 1 - p l - p 2 - .  . . - Pn-3 

Hence,  application of equation (28) leads  to  the following integral now taken  over pnm3: 

which again  can  be  evaluated by applying  equation  (28).  Carrying  out  the  (n - 1) inte- 
grations  in  succession  yields  the  value  (n - l)! / fl for  the  normalization  constant  c 
so  that 

I O 

is the  prior  probability  density  function  for  the  probabilities  pi. 

1 5  



This  distribution fo( F) can be modified by using  the  rule of Bayes which takes  into 
account  the  experimental  data  ml,  m2, . . . , mn . The  rule of Bayes is given by the 
expression 

where 

fD( 5) posterior  probability  density  function  for  the  probabilities 

fo( 5) prior  probability  density  function  for  the  probabilities 

P(D/ 5) probability of the  data  {ml , m2, . . . , mn)  given  that 5 takes on  the set of 

values {P1 ,P2, - * , Pn] 

The  expression  for  the  P(D/F) is merely  the  multinomial  probability  distribution: 

M! ml "2 m 
P(D/F) = P1  P2 * Pn n 

ml! mg! . . . m I n 

while  that  for fo(  5) is given'by  equation  (29).  The  denominator of the  right  side of 
equation (30) can be  evaluated  in  the  same  way as was done for  the  multiple  integral of 
equation  (26). We obtain 

- 1  (M + n - l)! ml m2 m 
fD(P)  = - n , P2  Pa . Pn 6 ml! m2! . . . mn. 

on surface S. 
The  posterior  probability  density  for 

integrating  over  the  other  probabilities: 
the  probability pi alone  may  be  obtained by 

dP1  dP2 - - - dPi-1 d ~ i + l  dpn-l 

(M + n - l)! - - i M-mi+"-2 
m.! (M - m. + n - 2)! 

m 
Pi (1 - Pi) , O ' p . 5 1  1 

1 1 

(3 3) 
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The  expectation  value of pi based on the  posterior  probability  density  function as  given 
by equation (33) is our  desired  objective  estimate of pi. The  estimate is then 

This relation, which holds when the  prior  probabilities  are  uniformly  distributed, is 
known as Laplace's rule of succession (refs. 15  and  16). Thus we can  say  that  according 
t o  the  Bayes-rule  estimate  the  probability  that  the  next  measurement will be  the ith re- 
sult is (mi + 1)/(M + n). 

This  answer  differs  from  that  given by the  maximum-likelihood  estimate of pi 
which is mi/M. We note  that  the  maximum-likelihood  estimate of  pi would be  iden- 
tical  to  the  Bayes-rule  estimate i f ,  in  the  maximum-likelihood  case, we supposed  that, 
before  any  actual  measurements  were  made,  there  were  n  hypothetical  measurements 
wherein  each of the  possible  outcomes  turned up exactly  once. 

MODIFICATION OF THE EXPRESSION FOR ENTROPY WITH THE ACQUISTION 

OF DATA IN THE ABSENCE OF PRIOR  INFORMATION 

Equation (34) has shown that when we s tar t  with a uniform  distribution  for  the  prob- 
abilities 5 the  use of Bayes' rule to  incorporate  the  data  ml,  m2,. . . , mn} leads  to 

the  objective  estimate  (mi + 1)/(M + n) for  pi. Now  we remark  that  application of equa- 
tions (16) and (17) with ni replaced by (mi + l) demonstrates  that  the  same  result could 
be  obtained by finding  those  pi's  that  maximize  the  expression. 

{ 

sD 

n 

p. In 
1 m. + 1 

1 

(3 5) 

i=l 

subject, of course,  only to  the  constraint given  by  equation (1). Hence, this 
modification of the  entropy  expression  should  be  examined  in  order  to see whether it can 
be  interpreted  in any sensible way. 

First, equation (35) says that  the  entropy  formulation S,, changes  with  the  accumu- 
lation of experimental  data. If we consider  the  term (mi + 1) as the  number of measure- 
ments resulting in  the ith outcome,  then  the  initial state of no  data  can  be  interpreted 
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as starting out  with a total of n  fictitious  measurements, one each  for  every  possible 
outcome i. But this is the  same  correspondence  that we noted in  the last section  in 
order   to  obtain  agreement  between  the  maximum-likelihood  estimate  and  the  Bayes-rule 
estimate. 

Second, we see that as the  number  M of measurements  increases,  the  least-biased 
estimate of pi based  on  equation (35) more  and  more  approximates  the  frequency with 
which  the ith result  occurs;  that is, ( &,)i - mi/M as both mi and  M  become  large 

compared  to n. Obviously this should be  the  case. 
Thus  the  reformulation S,, of the  expression  for  entropy  in  the  presence of data 

appears  to  yield  sensible  answers  for  the  limiting  cases of M = 0 and M - m. Also, 
the  theory a s  based on equation (35) illustrates  that  L.aplace's  principle of insufficient 
reason  and  Laplace's  rule of succession now rest on a common  footing;  namely,  the 
initial state corresponding  to  the  situation  where  no  prior knowledge exists consists of 
the  assumption  that  n  measurements  have  been  made,  each  possible  outcome of the 
n  possible  outcomes  turning  up  exactly  once.  Hence,  this is equivalent  to  starting out 
with the  assumption  that all outcomes a r e  equally  likely. 

CONSIDERATION OF THE PRIOR  DISTRIBUTION WHEN PRIOR 

INFORMATION I S  AVAILABLE 

To repeat,  we were  able  to  interpret  the  term (mi + 1) appearing  in  equation  (35), 
the 1 being  the  number of hypothetical  measurements  yielding  the ith result for the 
case  where no prior knowledge is on hand and  the mi being  the  actual  number of mea- 
surements  yielding  the ith result. By contrast, when we have  some  initial 

then, by applying Jaynes'  method, we can  obtain  least-biased  prior 

and  no  longer would it be  "reasonable"  to  assume a priori  the  same  number of hypo- 
thetical  measurements  for  each of the  outcomes.  Instead, we can  generalize  the  expres- 
sion  given  in  equation (35) by writing 

n .=-E Pi In m. Pi + a 
1 i  

i=l 

where ai is the  number of times  that  outcome i would be  expected  to  occur  based on 
our  initial  information  and  Jaynes'  method,  where  equation (17) is employed as the ex- 
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pression  for  entropy.  Thus, we let ai be  given as 

ai = YnG0) 
i 

(3 7) 

where V is an  adjustable  parameter  that  plays  the  role of the  flattening  constant 
(ref. 16). We note  that  equation (36) rever ts   to  equation (35) when no  prior  information 
is available  and Y = 1. 

By equation (37), the  number of hypothetical prior  measurements is 

Mo = Yn (3 8) 

so that  equation (37) takes  the  form 

It may be  noted  that the larger  the  value of V or Mo the  more  data is needed to  sig- 
nificantly alter  the  original  hypothetical  distribution g = al ,a2,  . . . ,an}.  The greater 

the  degree of credibility  in  the  initial  information,  the  larger  the  value  should 
take on. Caution  must  be  exercised  in  this  regard  because  the  vector g corresponds  to 
a  complete  specification of the  distribution  and  this  distribution,  even though it repre-  
sents  the  least-biased  distribution  based on initially known true  values of averages, 
could  be  very  far  from  the  appropriate  distribution.  There  might  be  some  cases when it 
is justifiable  to  take c& as large as 3 o r  4. Even  zero  might  be  chosen for  V if 
it is desired  to obtain  the  maximum  likelihood  estimate of 5. 

A t  this  point,  the  concepts  associated with the  generalized  method by which we can 
proceed  have  been  completely  established. If there is some  initial knowledge as given by 

the  constraints,  then, by using  Jaynes'  method,  the  least-biased  prior  estimate po , as 

given by equation (16), is set up. The  hypothetical  distribution is found and  inserted 
into  the  expression  for H given  in  equation (36) by using  equation (37) (or by eq. (39)) 
and our degree of credibility as characterized by V (or M ). If the  experimental  data 
{ml,  m2, . . . , mn) a r e  now incorporated  into  the  problem,  then H may be  maximized 

with respect  to 5 subject  to  any  constraints  that  may  apply a posteriori. If these 
posterior  constraints  are  written as 

(1) 
0 

2 Pihq(i) = (h  q ) , q = 1 , 2 , .  . . ,& (40) 
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then  the  expression for pD may  be  given by (* )i 
Q 

where vo-1, v1 , . . . , vQ are Lagrangian  multipliers.  Thus,  this  procedure  yields 
/A \ 

least-biased  estimates  p , i = 1 , 2, . . . , n, which take  into  account  both  prior  and 

posterior  information as well a s  experimental  data. 
\ 0)i 

Note that  maximization of H with respect   to  I; when all mi = 0 yields  the  least- 
biased  estimates 

so  that,  in  the  limit  where  all mi = 0,  the  generalized  method still gives  the  same  values 
for the  least-biased  estimates  as  those  given by the  Jaynes'  method. 

It may  be observed  at  this point  that  the  method as stated  may  be  employed for the 
case of continuous  random  variables  with very little change  in  viewpoint.  This fact is 
shown in  the  subsequent  examples  illustrating  the  generalized  method. 

EXAMPLE  INVOLVING DISCRETE VARIABLE 

We consider  a  simple  example  to  illustrate  the  method.  Let  the  number  n of pos- 
sible  outcomes  be 3 with i = 1 , 2,  or 3 designating  the  three  possible  outcomes.  Let 
the  prior  information  be  given by 

3 
z i p i  = 1 . 5  
i=l 
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I '  

Applying Jaynes'  method, we find that  the  least-biased  prior  probability estimates 
are 

= 

0.643, i = 1 

0.143, i = 3 

j=l 

Taking kp = 1, we write H as 

i=l 

Let  us  assume  that  six  experimental  measurements  have  been  made  and  the  data is 
; that is, outcome i = 1 has  occurred  three  times,  outcome i = 2 once, 

and  outcome i = 3 twice.  Then 

2.429, i = 3 

We shall  obtain  objective  posterior  probability  estimates for two cases: 
(1) Where  the  constraint a s  given by equation (42) no longer  applies  (This is the 

situation  that  occurs when the  constraint  represented  an  initial  guess  and we want to re- 
lax this  constraint a posteriori  because  the  guess  might well  prove  to be wrong.) 

(2) Where  the  constraint as  given by equation (42) still applies (In this  case,  we 
know definitely  that  this  relation  holds  and all probability  estimates,  whether  prior or 
posterior,  must  conform  to  this  relation.) 
We obtain  the  following  posterior  probability  estimates: 
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Case Constraints Outcome, 

I i I.; 
.670  .160 i 3 

3 
0.270 c p i  = 1 

i= 1 

3 3 
.170 C p i  = 1 ,  ipi = 1.5 

i= 1   i= l  

We see  that  for  the  situation  where  the  constraint  that  the  expectation of i remains 
a t  1 . 5  still  holds (i. e . ,   c a se  2) ,  the  constraint  acts  to  increase  the  posterior  probability 
values  for  small  values of i and  lower  those  for  larger  values of i. In  case 1 ,  the  in- 
clusion of the  experimental  measurements  coupled  with a relaxation of the  constraint of 
equation (42) served  to  increase  the  estimate of the  expectation of i from 1 . 5  at  the 
outset  to  the  value of 1.722.  

APPLICATION TO CONTINUOUS RANDOM  VARIABLE 

We wish to  modify the  generalized method so that it applies  to a continuous  random 
variable.  Let  the  random  variable we are  considering  be  denoted by X and let f(x) 
denote  the  probability  density  function of X so that  f(x)dx  designates  the  probability 
that X l ies  in dx a t  x,  that is, the  probability  that x 5 X 5 x + dx. 

A 

To establish  the  least-biased  prior  probability  density  function fo(x) for X, 
Jaynes' method is used a s  previously  described  but,  inasmuch as the  random  variable 
is now continuous  where  before it was  discrete,  the  sums  become  integrals.  Hence, 
fo(x) is found by the  calculus of variations  technique as that  function which maximizes 
A 

subject  to  the  constraint 

L* f(x)dx = 1 (44) 

that  always  holds  and  any  other  constraints  written a s  

22 



that would express  the  extent of the  experimenter's  prior knowledge.  The result of the 
maximization is given by 

where XO-l7Xl,h2,. . . ,Xk are Lagrangian  multipliers. 

ber  Mo of initial hypothetical  measurements  can  be  chosen  in  accordance  with our de- 
gree of credibility.  Thus,  the  prior  distribution fo(x) can be said  to  be  based on Mo 
measurements. 

NOW, we a r r ive   a t  the  problem of incorporating  in our distribution any measure- 

Obviously,  once  the  prior  distribution fo(x) has  been  established,  the initial num- 
h 

A 

ments of X that  have  been  made a s  well a s  any posterior  constraints  that  apply.  This 
problem  can  easily  be  resolved if we look a t  equation (41). There we see  that,  in  the 
absence of any constraints  except  that of equation (l), is proportional  to  the  sum 

of the  number of initial  hypothetical  measurements  that  have  yielded  outcome i and 
number of actual  measurements  that  have  yielded  outcome i. The  posterior  constraints 
merely  serve  to modify this  sum.  Therefore,  the  corresponding  expression  for  the 
least-biased  posterior  probability  density  function fD(x) of the  continuous  random  var- 
iable X must  be 

C )i 

r 

where  the  data x1 ,x2, . . . xm are the  M  values  that  have  been  observed  in M mea- 

surements of X and 6(x - xi) is the  Dirac  delta  function  with  argument (x - xi).  In 
equation (47) , vo-1 v17 v2, . . . , IQ a r e  Lagrangian  multipliers  and  the  posterior  con- 
strains  that apply a r e  

{ I 

e: 
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A 

It is to  be  noted that, although fD(x) as  written  appears  to  describe  a  variable of the 
so-called  mixed  type,  partly  discrete  and  partly  continuous, it is not  claimed  that  X is 
such a variable.  Rather it is claimed  that f D(x) is an unbiased  probability  density 
function for X  based on incomplete  knowledge  about  the  distribution of the  variable  X 
and  that  from  fD(x) one can  derive  unbiased  estimates for the  expectations of statist ics 
involving  X. It might  be  possible  to  devise  an  objective  method for incorporating  the 
measured  values of X in  the  probability  density  function fD(x) in  such  a way that,  say, 
f D(x) and its derivative  remain  continuous  throughout  the  domain of x but  such a method 
will  not  be  attempted  herein. 

A - 

A 

A 

A 

EXAMPLES  INVOLVING  CONTINUOUS  VARIABLE 

Bounded  Cont inuous  Var iable 

In  this first example, we 
continuous  variable X is the 

consider a simple  case  wherein  the  sample  space for the 
open  interval ( 0 , l ) .  The  prior  information is given as 

L1 x  f(x)dx = 0.4  (49) 

Then, by equation  (46),  the  least-biased  prior  probability  density  function is of the  form 

A -x  -x x 
f ,(x) = e 0 1  

where x. and hl are constants whose values are determined by equations (44) and  (49). 
We obtain 

fo(x) = 1.74 e O < x < l  
A - 1 . 2 3 ~  

We take Mo to  be 4; that is, we assume  the  prior  distribution is worth 4 measurements. 
Now, suppose two independent  measurements of X  were  made  and  the  values  ob- 

served  were x1 = 0.817  and  x2 = 0.574.  Let  us  consider  two  cases: 

E[X], E[X 3, and  the  probability  that  X < 0. 5. 
(1) There  are  no posterior  constraints. We wish to obtain  least-biased  estimates of 

2 

(2) The  constraint  given by equation (49) still  applies  a  posteriori.  This  means  that 
E[X], the  expectation  value of X, remains fixed. We wish to  obtain  least-biased  esti- 
mates of P(X > 0. 5) and E[X2]. 
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Based on the  prior  distribution fo(x) given  in  equation (50), we get 
A 

Eo[X2] = L ' x 2  i0(x)& = 0.237 
A 

The results for  the  two cases are as follows: 

Case (1): 

23x + 6(x - 0.817) + 6(x - 0. 57413 

ED[X2] = L 1 x 2  &(X)& = 0.324 
A 

Case (2): 

fD(x) = 2.06 e -2' 51x + 0.296 e -1*28x[6(x - 0.817) + 6(x - 0.5744 0 < x  < 1 (52) 
A 
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Now, suppose  that  one  were  interested  in  establishing a least-biased  estimate  for 
the  variance ox2 of X for  the  prior  and  posterior  situations  for  each of the  previous 
two cases.   In  order  to  arrive at these  estimates, we need  to  find out just how our prior 
and  posterior knowledge arises.  The  reason  that  such knowledge is required is shown 
by the  following. We have 

* *  

OX = E [(X - P,)~] = k { [(X - E[X]) + (E[X] - px)] '} 
= ii [X21 - (E[X])2 + ii [@[X] - ax)2] (53) 

where  the  variance of X is denoted by ox and the  mean of X by ax. Hence, in 2 

order  to  determine ox, we not only need to  know i [ X ]  and E[X ] but also  an  estimate 
for  the last te rm on the  right  side of equation (53) which depends on  how close E[X] is to 
the  true  mean px of X. Because  the  constraint (eq. (49)) sets the  value  for E[X], we 
have to  know the  reasons  underlying  equation (49) in  order  to  estimate ax. 

Let  us  suppose  that,  in  case (1) at  the  outset,  the  prior  information  consists of 
knowing only the  average  value 0.4 of 4 independent  measurements of X but  nothing 
else about  these  measurements.  Then 

A 
2 

* 

2 

A 

E [X] = 0.4 
0 

represents  an  estimate  based on Mo = 4 measurements  and we can  write 

2 2 
ii [ @[X] - PX,21= - Ox = - Ox 

MO 4 

Substituting  this  relation  into  equation  (53), we get  for  case (1) where we have  employed 
the  values  in  equations (49) and (50b) 

4  \4/ 

A 

In  addition,  the  estimate ED[X] a s  given by equation (51b) is based on M + Mo = 6 
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measurements.  Therefore, by employing  the  values  in  equations (51b) and  (51c), we find 

6 

On the  other  hand,  suppose,  in  case (2), the  prior  information as given by equa- 
tion (49) represents  the  average of a very  large  number of measurements so that we can 
consider 0 . 4  a s  being  very  close  to  the  true  mean px. Then  the last term  in  equa- 
tion (53) is essentially  zero so that 

($)o 2 ko[X2] - (Eo[X])2 A = 0.077 

and 

I(U:)~ E ED[X * 2 *  ] - (ED[X])2 = 0.236 - (0 .4)  2 = 0.076 

It should  be  fairly  obvious how to  treat  an  intermediate  situation  where  the  value of 
the  average of X a s  given  in  equation (49) is based on, say, 20 measurements.  In  this 
instance,  the  posterior  constraint would no longer  be  equation (49) because, after mea- 
surements of 0. 817 and 0.574 for X, the value of the  average would change from 0 . 4  to  

20X0.4 + 0.817 + 0.574 = 0.427 
22 

Hence,  in  this  instance,  the  posterior  constraint would become 

x fa(x)dx = 0.427 

which change would in  turn modify fD(x). Also,  the  value of ED[X] would now be  con- 
A A 

sidered as based on 22 measurements of X when calculating u . (%ID 
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Time-to-Failure 

Here we are interested  in  the  time-to-failure of a given  part  subjected  to a pre- 
scribed  loading when the  material is manufactured  according  to  certain  specifications. 
Suppose we have  reason  to  guess  initially  that  the  average  time-to-failure is about 
10 hours and  suppose  that  five  measurements  were  made,  in  three of which the failure 
times  were 7, 8,  and 12 hours  and  in  the  remaining two, for one reason  or  another,  the 
experiment  was  stopped  before failure at the  runout  times of 5 and 10 hours. What we 
wish to  find, on the  basis of what has  been  given, is an  objective  estimate of the  expec- 
tations of the first and  second  moments of the  time-to-failure  plus,  say,  an  estimate of 
the  probability  that  the  survival  time is larger  than 10 hours. We shall  arrive at esti- 
mates  for  three  cases,  namely, when the  initial  guess is equivalent  to Mo = 1, 2, or 
5 measurements. 

We first have to find  the  least-biased  prior  distribution  for  the  time-to-failure. 
Letting  f(t)dt  be  the  probability  that  failure  occurs  at  time t in  dt (t in  units of hr) we 
can  maximize 

S = - dmf(t) In  f(t)dt 

with respect  to  the  probability  density  function f(t) subject  to  the  constraints 

/om f(t)dt = 1,  im t f(t)dt = 10 

to find  the  least-biased  estimate  for  the  prior  probability  density  function 

fo(t) = 0.1 e 
* -0. It (54) 

According to the  least-biased  prior  probability  distribution,  the  probability  that  the 
time-to-failure t lies  between  times ta and tb is equal  to 

-0. Ita -0.1% 
Po(ta < t < $J = e - e  (55) 

The  average  time-to-failure for failures  occurring  between  times ta and tb is for  the 
prior  distribution 

28 
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-0. Ita -0.1% 

-0. Ita -0.1% 

+ O.lt,)e - (1 + O.l$,)e 

e - e  I 
The  average  square of the  time-to-failure  for failures occurring  between  times ta and 
tb is 

Also the  expectation of the  square of the  time-to-failure  for  the  least-biased  prior  dis- 
tribution is 

Eo[t ] = 200 hr * 2  2 

Let  us follow  the  method  in  detail  for  the  case Mo = 5. It is convenient  to  consider 
the  two  runout  measurement  times of 5  and 10 hours   as  dividing  the  time-to-failure axis 
into  the  three  intervals: 

I: O S t 5 5 h r  

11: 5 hr  -= t 5 10 h r  

ID: t =- 10  hr 

Then, by equation  (55), we can  find  the  prior  probability  estimate of failure  occurring  in 
each of these  intervals. Also, we can  make  use of equations (56) and (57) and  compile  a 
table  based on the  prior  probability  estimates: 

Interval 

I 111 I1 

Mo(iO)i 

499 55.2 7.31 Fo[t2]). 1 

20 7. 29 2.29 
(io[t])i 

1. 84  1.19  1.97 
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Thus,  before  measurements  begin, on the basis of our  initial knowledge  and  the as- 
sumption  that Mo = 5, there  are 1.97  measurements  in  interval I with an  average 
t-measurement of 2.29 hours  and  an  average  t2-measurement of 7.31  hour , 1.19  mea- 
surements  in  interval I1 with an  average  t-measurement of 7.29 hours  and  an  average 
t2-measurement of 55.2  hour2,  and  1.84  measurements  in  interval I11 with an  average 
t-measurement of 20 hours  and  an  average  t2-measurement of 499 hour . 

2 

2 

These  figures  can first be  altered so as  to  incorporate  the  three  time-to-failure 
measurements of 7, 8, and 1 2  hours.  The  altered  probability  density  function is 

fA(t) = -[5 fo(t) + 6(t - 7) + 6(t - 8) + 6(t - 12fl 
n 1 ^  

8 

and the table based on this  altered  probability  distribution is 

Interval 

I I11 I1 

Number of 2. 84 3.19 1.97 
measurements 

(~*[tl)i 
17.18 7. 43 2.29 

7.31 375.0 56.05 

These  tabulated  values may be calculated  in  an  obvious way using the values  from  the 
table  based on fo(t). For example,  the 7-hour  and 8-hour  failure  times fall in  inter- 
val I1 so  that 

= 
1.19X7.29 + 7 + 8 = 7. 43 

3.19 

PA[t2$II = 
1.19X55.2 + (7)2 + (8)2 = 56. o5 

3.19 

The  number of measurements  in  each  interval now have  to be  changed  in  accordance 
with  the  two  runout  time masuremen t s  of 5  and  10  hours.  The  10-hour  measurement 
increases by one  the  number of measurements  in  interval 111 to  3.84  whereas  the 5-hour 
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measurement is to  be  distributed  over  intervals I1 and ID. If we use  the  numbers  in  in- 
tervals I1 and I11 to  represent a relative  probability of a m.easurement  arriving  there, 
then  the  fraction of the  runout  time 5-hour measurement  ascribed  to  interval I1 is 
(3.19)/(3.19 + 3.84) = 0.454 while  the  fraction  ascribed  to  interval I11 is 
(3.84)/(3.10 + 3.84) = 0.546. Hence, our table now becomes 

I Interval 

1 I11 II 

Number of 
measurements  4.3  86 3.644  1.97 

M i  
.197 .4386 .3644 

2.29 17.18 7.43 

7.31  375.0  56.05 

where 

so  that, for Mo = 5, 

(b). = 
(number of measurements  in  interval i) 

1 10 

The  Same kind of reasoning  also  gives  the  least-biased  estimate of the  posterior  prob- 
ability  density  function as  

A 

fo(t), 0 I t 5 5 

A A [5 fo(t) + 6(t - 7) + 6(t - 8)] , 5 -= t 5 10 

0.155 [5 fa(t) + 6(t - 12)], t > 10 

(59) 
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Thus,  for Mo = 5, we have 

 ED[^] =z(&) (iD[t]) = (0.197)(2.29) + (0.3644)(7.  43) + (0.4386)(17.18) = 10.70 hr  
A 

i i 
i 

and 

Also,  an  objective  estimate of the  probability  that  a  randomly  selected  part will las t   a t  
least  10 hours is given by 

These  values  enable us  to obtain  a  posteriori  an  estimate  for  the  variance of the 
time-to-failure t. Again, we resort  to  equation (53) where X - t and see that we have 

to   arr ive at an  estimate of the  value of under  the  conditions  that E[t] 
A 

was  determined by a  total of M + Mo = 8 measurements of the time-to-failure t and 
Mr = 2 measurements of runout  times.  Obviously, a measurement of runout  time would 
not be  expected  to  be a s  effective a s  a  measurement of the  time-to-failure t in f i x i n g  
the  value of E[t]  close  to  pt. 

written 

A 

A s  shown in any textbook  treating  stratified  sampling,  the  variance of t can be 

i i 

where 

Pi probability  that t lies  in  interval i 

variance of t if  t is constrained  to  lie  in  interval i 

mean of t if  t is constrained  to  lie  in  interval i 

(ut")i 
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It can be demonstrated  that the variance of an  average  value t of t based on (M + M,) 
measurements of t and Mr measurements of runout  times is given by the  formula 

0- - z -  i + i  
t M + M o   M + M o + M r  

provided the class  boundaries of the intervals  are the runout  time  measurements.  Equa- 
tion (61) can  be  written 

2 
2 O  t -  Mr a- = 
t M + Mo (M + Mo)(M + Mo + Mr) 

i 

Now 

â; = ii [(i[tl - pJ2] 
t 

Ition s o  that applying  equation (53) we obtain the desired rela 

A i [ ? ]  - (i[t])2 - Mr 
2 (M + Mo)(M + Mo + Mr) 

a t  = " 

i 

1 -  I 

M + Mo 

Using the  values  obtained for the Mo = 5 case, we get 

A 
186.5 - ( lo .  7 0 ) ~  - 2 [O. 197(2.29 - 10. 70)2 + 0.3644(7.43 - 10.70) 2 

WO) 
8 

+ 0.4386(17.18 - 10. V O ) ~ ] }  = 81.3 hr  2 
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A tabulation of least-biased  estimates of the  various  quantities is given  in  the  fol- 

.1968 

. 1124 

.0656 

A 

P 

I1 

I. 2386 

.3644 

.4217 

.4541 

lowing: 

< I .43 86 

.4659 

+I 

7.475  14.15 

- 

70 

57 

35 
- 

Fatigue  Stress  Distr ibut ion Based o n   R u n o u t  Data Alone 

- 

k [ t 2 ]  

- 
200 

186.5 

162 

141 

A 
2 

at 

"" 

81.3 

61.2 

43.5 

In  this  example, we will consider  the  same  problem  treated by Shah (ref.  17). He 
was  interested  in  determining  an  objective  estimate of the  probability  that  a  certain 
manufactured  part will last longer  than 10 cycles  under  an  alternating  fatigue stress 7 

load of 140. lX lO newtons  per  square  meter (20  325 psi). He had  the resul ts  of four 
fatigue tests run at  different  values of the  alternating stress o .  In  all  four of these 
tests, the  part  did not fail in 10 cycles  even though the stress loading  in  each test was 
much larger  than 140.1x10 newtons per  square  meter.  The  values of the  alternating 
stresses  for  the  four tests were 2 6 6 . 5 ~ 1 0  , 296.2XlO , 377.4X10 , and 247.9X10 newtons 
per  square  meter (38 650, 42 960, 54 730, and 35  960 psi).  In  his  paper, Shah used  the 
value of 284.6X10 newtons  per  square  meter (41  270 psi) as  his  prior  estimate  for  the 
average  stress  at  which failure at 1 0 '  cycles  occurs. 

3 

7 
3 

3  3  3  3 

3 
I- 

Let  f(o)da be interpreted a s  the  probability  that  the  alternating stress o in  do 
will cause  fatigue failure in  a  randomly  selected  manufactured  part after exactly 10 cy- 
cles. Hence  the  probability  that a part will last  longer  than 10 cycles  under a stress 
load of of is given by the  integral 

7 
7 

which is also  the  probability  that  a  stress  larger  than o' will  be  needed to  cause 
breakage  at  exactly 10 cycles. 7 

We handle  this  problem  in  the  same way a s  we did  the  previous  problem.  The 
cr -axis is divided  into six intervals  where  the  runout  stress  load  measurements  and  the 
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stress we are  interested  in  serve as the  boundaries.  Thus,  the six intervals are the 
following: 

The  least-biased  probability  density  function  for  the stresses at which the  part lasts 
exactly 10 cycles  based on the  initial  guess  that a. = 284.6X10 newtons per square 
meter (41  270 psi) is of the  same  form  as  that  given  in  equation (39) for  the  time-to- 
failure 

7 3 

A 1 - / T o  
f (a) = - c 0 - 

a O  

and  again, as we did  before, we shall  carry out  the  calculations  for  several  different 
values of Mo; in  this  problem, let us  take the  initial  guess as worth Mo = 1, 2,  4, or 
10 measurements. 

The  fact  that  all  the  measurements  are  runout  stresses  means  that  the  estimated 
average  value of the  stress  in  each of the  intervals  remains  constant as the  measure- 
ments  proceed. Only the  probability  distribution  over  the  intervals  changes.  The re- 
sults of the  calculations  are  tabulated a s  follows: 

I Interval I 
I II I11 IV V 1 4  

A 

Estimated  average  stress for interval, E[o], N/m 

6 4 . 5 ~ 1 0 ~   ~ 1 9 0 . 0 ~ 1 0 ~  1256.  8x1O3 1280. 6x103 1335.  1x103 1661.9~10~ 

2 
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Mol 4 I G I  I SI1 I s v  I i v  I ;VI I ir.1 
Prior  probabili t ies 

. -~ ~.. 

~ - " 

I O .  389 284.6X10: 0.2655  0.088 0.027  10.0385 
0.192 

(T = 266.  5x103 N/m2 (38  650 psi) 

10 308.8X10'  0.303 0.100 0.0439 0.0246 0.175 0.354 

r o  

4 

417.8 .4714 .1562  .0684 .0135 .096 .1945 1 
373.6 .403 .134  .0584 .018 .I28 .259 2 
337.9 .348 .115 .0505 .0216  .154 .311 

u = 296.  2X103 N/m2 (42  960 psi) + previous 1 

10 0.324 

.096 .195 2 
.420  380.2  .139 .0357  .018  .128  .259 4 
0.342  331.9X1O3 0.113 0.0386 0.0225 0.160 

.193 .022 .0090  .064 .1297 1 
.500  429.3  .166 .0300  .0135 

.582 r 479,l 

r o  

u r o  - - 377.4X10 N/m (54  730 psi) + previous 2 3 2  
~~ 

10 357.6x103 0.393  0.105 0.0346 0.0208 0.148  0.299 
4 

555. 5 .780  .0543  .0137 .00675  .048 .097 1 
495.9  .660 .0759 -0209 .0108  .0768  .156 2 
430.7 .533 .0910 .0281  .0154 .llO .222 

~ . ~~ 

u ~ . ~  = 247.9X10 3 2  N/m (35  960 psi) + previous 3 

"- - 

The  probability  that  the  part  lasts  more  than 10" cycles  under  an  alternating 
stress of 140.1X10 newtons  per  square  meter (20 325 psi) is plotted  in  figure  l(a) a s  a 
function of the  number of measurements and Mo. The  curves satisfy a  simple  relation 
because none of the  runout  stresses  were  less than  140.lXlO  newtons  per  square  meter. 
Hence, no portion of any of the  four  measurements is allotted  to  interval I and 

3 

3 

MO 0.389 Mo 

b)I = Mo + M Mo + M 
- - 

where M is the  number of actual  measurements. Obviously the  estimated  probability 
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Number of i n i t i a l  
hypothetical  measurements, 

(a)  Estimat  of  probability of su rv i v ing  IO7 cycles  at  stress  level  of 

6 4 0 ~ 1 0 ~   R u n - o u t  stresses, 

140.1~10 5 newtons  per  square  meter ( 2 0  325 psi). 

r Number  o f   in i t ia l   N lm 
I hypothetical 1: 266. 5x103 

2:  2%. 2x103 

3: 3 7 7 . 4 ~ 1 0 ~  

4: 247. 9x103 

240 0 
1 

1 2 3 4 
Number of measurements 

(b) Estimate  of  average  stress  for  which  fai lure  occurs  at lo7 cycles. 

Figure 1. -Fatigue  stress example. 

that  the  part lasts longer  than lo7  cycles  under a stress of 140.lXlO  newtons  per 
square meter is 

3 

- = 

M + 0.611 Mo 

Mo + M 

In figure l(b),  a posterior  estimate of the  average  stress for  which  failure  occurs at 
10 cycles is plotted as a function of the  number of measurements  and  the  value of Mo. 7 
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CONCLUDING REMARKS 

A method has  been  devised  that  enables  the  calculation of objective  and  reasonable 
posterior  probability  estimates  for both discrete  and  continuous  sample  spaces. It has 
been shown that the  method agrees with the rule of Bayes  and  provides a simple  inter- 
pretation of Laplace's  "principle of insufficient  reason"  and "rule of succession". 

The  procedure is based on a reformulation of the  expression  for  entropy first sug- 
gested by Jaynes  for  arriving at "least-biased"  probability  estimates  and  extends 
Jaynes'  reasoning  to  the  situation  wherein  experimental  data is on hand in  addition  to  any 
constraints  that may  apply  a  posteriori. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  October 28, 1971, 
132-15. 
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